Construction Task Force Update FHWA Mix ETG

Andrew Hanz MTE Services Inc. September 18, 2015

Discussion Points

- High RAM Projects and Performance Testing
- Joint Density in-Progress Research
- Solicit Mix ETG for future task force activities

High RAM Projects

- 2014
 - STH 77 Ashland CTY WI. Part of WisDOT High RAM Pilot Program
- 2015
 - Three projects in NC WI and Central MN. One state road and two county highways.
- % Binder Replacement ~40%.
- Incorporate performance testing in mix design and production testing.

Selected Performance Tests

Thermal Cracking DC(t)

Fatigue Semi-Circular Bend (LSU and UIUC)

Rutting Hamburg

HT (50°C)

Long Term Aging – Loose Mix Aging 12 hours @ 135°C

- SCB and DCT
- Recovered binder grade and ΔTc

High RAM General Approach Materials Selection

1. Characterize RAM	 Obtain millings from project. Extract/RAM binder and determine true PG. Average LT grade of RAP ~-24°C
2. Select PBR and Virgin Binder	 Apply Blending Charts: Target Plan Grade. Select virgin binder grade: PG 58-28, PG 52- 34, PG 58-40
3. Volumetric Mix Design	 Same process as conventional mix design. Target %AV of 3.5% of 4.0% used.

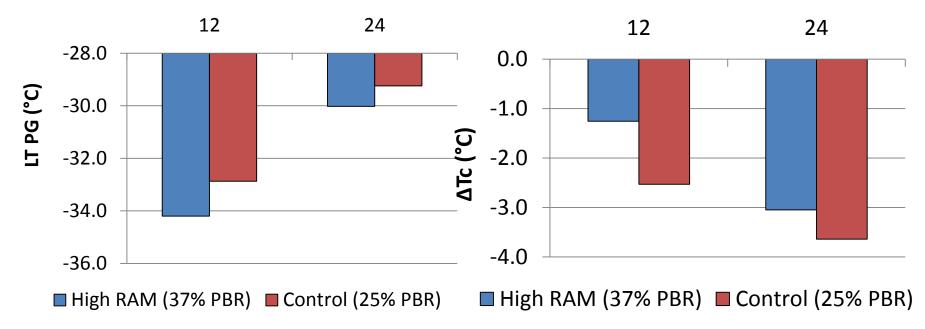
High RAM General Approach Mix Design and Performance Testing

4. Verify Binder Properties	 Extraction and recovery on mix design pill. Grading based on as-recovered and as-recovered + PAV. Include ΔTc Have also used binder from loose mix aging.
5. Evaluate Hamburg	 Verify the mix has adequate stability. Reasons for instability could be grade dumping or use of more asphalt binder.
6. Cracking Resistance	 12 hours at 135°C – Loose Mix Aging Mixture: SCB @ 15°C, DCT @ PG LT +10°C, Fracture Energy > 400 J/m²

Testing Plan

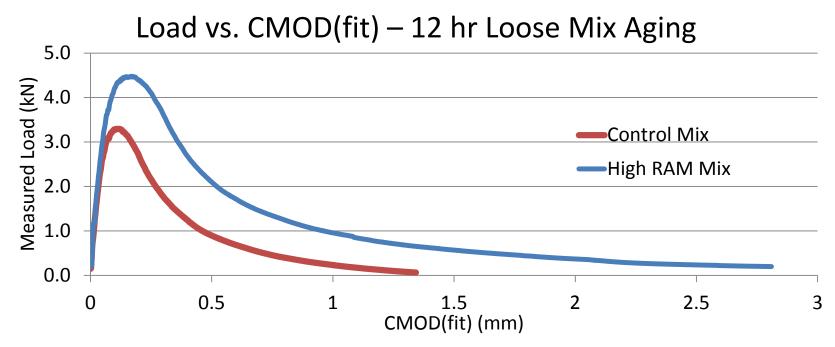
- Mix Design
- Construction
 - 1st 600 ton of production
 - Every 10k ton after.
- Future Evaluation
 - Field performance surveys.
 - Coring and analysis of mixture modulus (TB), cracking tests and recovered binder properties.

Example – STH 77 Comparison to Control Mix


- At a minimum our expectation was that the high RAM mix would perform as well as conventional mixes placed in WI.
- Primary distress in WI is cracking, comparison will focus on
 - Recovered binder grading
 - DCT testing
 - Sensitivity to aging

Comparison of Mix Designs

Property	Control Mix – 12.5mm	High RAM 12.5mm	
% Binder Replacement	24.5%	36.7%	
Design Air Void	4.0%	3.5%	
VMA	15.1%	14.9%	
Vbe	12.7%	13.3%	
Dust to Binder Ratio	0.90	1.0	
Asphalt Binder Grade	PG 58-34	PG 58-40	
MSCR Jnr 3.2 kPa @ 58C	3.0	1.1	
MSCR %R 2.3 kPa @ 58°C	0	43.5%	


Binder Properties

Binder recovered from mixes subjected to loose mix aging at 135°C

- High RAM mix is softer after 12 hours loose mix aging, mixes behave the same at 24 hour aging.
- Differences in R (2.8 vs. 3.0) and cross over frequency (61 rad/s vs. 12 rad/s) observed for high RAM mix.

DCT Results @ -24C

Mix	Gf: 12 Hr Loose Mix Aging (J/m2)			r Loose Mix (J/m2)
High RAM	634.3	70.8	587.5	127.9
Control	296.1	20.4	360.4	5.0

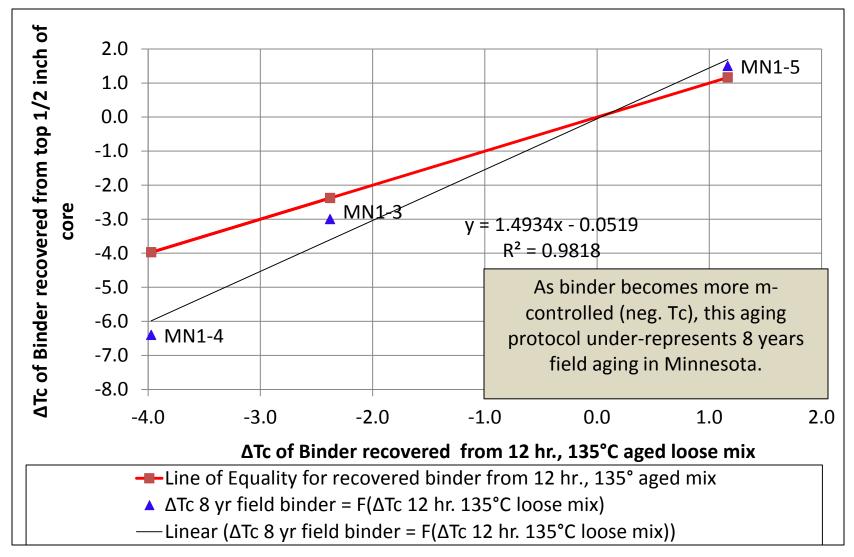
STH 77 Observations After 1 Yr.

- High RAM Section was 4 miles long.
- Control is 9 miles.
- Overall pavement is performing well.

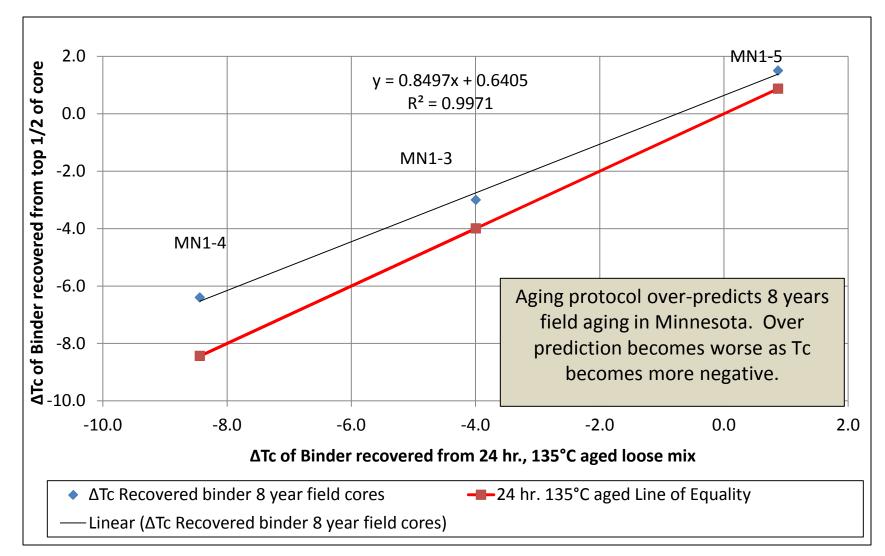
- Very few transverse cracks.
- Small crack width
- No difference in performance between sections.

Final Remarks

- Performance testing has evolved from a research tool to part of conventional practice in our lab.
- We have found it beneficial to adjusting mix designs or materials selection.
- With this set of projects there is an opportunity to compare actual field performance to laboratory test results.
- Possibility to compare lab conditioning vs. field aging.


Future Research Activities

- 1. Effect of Laboratory Aging
 - Understand effect of aging on performance tests.
 - Compare lab aged vs. field aged materials.
 - Loose mix aging vs. PAV.
- 2. Comparison of High RAM to Standard Mixes
 - Establish baseline for performance properties.
 - Compare rates of aging.
- 3. Contribute to identifying performance based limits.


Performance Testing Challenges

- Test procedure harmonization: conditioning, sample geometry, etc.
 - Example: WisDOT vs. MnDOT DCT, Notch depth/width for different cracking tests.
- Repeatability within lab and between lab.
 - ASTM working group for SCB, cracking test study with Rutgers.
- Aging: Protocol and relation to field.
- Selecting tests and performance criteria
 Use "standard" mixes as a baseline.

Laboratory vs. Field Aging, (Reinke, 2015 ETG) 12 Hr. Loose Mix @ 135°C

Laboratory vs. Field Aging (Reinke, ETG 2015) 24 Hr. Loose Mix @ 135°C

Longitudinal Joint Density Research

- WisDOT Funded <u>0092-15-09</u>
 - Asphalt Mixture New Specifications Implementation Field Compaction and Density Validation (end June 2016)
- Two specific initiatives that require additional field research and evaluation
 - Special provision for Thin Layer Overlays
 - Evaluate density measurements of longitudinal joints to assess construction and compaction
- Mathy is also collecting joint density data on projects in WI, MN, IA, and MI.

Open Discussion

- Task Group gave updates on two items:
 - Performance testing on lab and field produced mix. Future opportunity to compare lab measures to field performance.
 - Longitudinal Joint Density work that will be complete in 2016.
- Suggestions from the ETG for other activities?

Thank you

Erv Dukatz <u>Ervin.Dukatz@mathy.com</u>